Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,5-Dibromoterephthalic acid dihydrate

Guang-Liang Song, Shan Liu, Hua-Jun Liu, Tao Zeng and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
Correspondence e-mail: zhuhj@njut.edu.cn
Received 16 May 2008; accepted 24 August 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.049 ; w R$ factor $=0.117$; data-to-parameter ratio $=15.0$.

The asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains one half-molecule of 2,5 -dibromoterephthalic acid (DBTA) and one water molecule. The DBTA molecule is centrosymmetric. In the crystal structure, intermolecular O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules, forming a threedimensional framework.

Related literature

For general background, see: Yao \& Tour (1999). For a related structure, see: Singh \& Bedi (1957).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=359.94$
$b=7.413(1) \AA$
$c=7.074(1) \AA$
$\beta=92.74(3)^{\circ}$
$V=558.89(15) \AA^{3}$
$Z=2$

Data collection
Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.530, T_{\text {max }}=0.594$
(expected range $=0.499-0.559)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048 \quad 21$ restraints
$w R\left(F^{2}\right)=0.117$
$S=1.05$
1003 reflections
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}$

67 parameters

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} W A \cdots \mathrm{O}^{\mathrm{i}}$	0.85	2.11	$2.903(9)$	155
$\mathrm{O}^{\mathrm{i}} W-\mathrm{H} W B \cdots 1^{\text {ii }}$	0.85	2.22	$2.944(9)$	142
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} W^{0.82}$	1.75	$2.566(8)$	177	

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.
Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2130).

References

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, T. \& Bedi, S. N. (1957). J. Indian Chem. Soc. 34, 321-323.
Yao, Y. X. \& Tour, J. M. (1999). Macromolecules, 32, 2455-2461.

supplementary materials

Acta Cryst. (2008). E64, o1860 [doi:10.1107/S1600536808027268]

2,5-Dibromoterephthalic acid dihydrate

G.-L. Song, S. Liu, H.-J. Liu, T. Zeng and H.-J. Zhu

Comment

2,5-Dibromoterephthalic acid (DBTA) is an important intermediate in the preparation of flame-retardant polymers (Yao et al., 1999). We report herein the crystal structure of the title compound (I).

The asymmetric unit of I (Fig. 1), contains one half of a molecule of 2,5-dibromoterephthalic acid (DBTA), which is related to the other half by a center of symmetry, and one water molecule. Three neighbouring DBTA molecules are linked through one water molecule by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, to form a three dimensional framework.

Experimental

The title compound was prepared according to the method described by Singh \& Bedi (1957). Crystals of (I) suitable for X-ray analysis were obtained by dissolving DBTA (2.0 g) in water (80 ml) and evaporating slowly at room temperature for about 15 d .

Refinement

Anisotropic parameters of the C atoms in the phenyl ring were restrained to have equal components and approximately isotropic behavior. H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82$ (for OH) and 0.85 (for $\mathrm{H}_{2} \mathrm{O}$) and $\mathrm{C}-\mathrm{H}=$ 0.93 and $0.96 \AA$ for aromatic and methyl H , respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $x U_{\mathrm{eq}}(\mathrm{C} / \mathrm{O})$, where $x=1.2$ for aromatic H and $x=1.5$ for other H .

Figures

Fig. 1. The molecular structure of (I), showing the atom labelling scheme. Anisotropic displacement parameters are shown at the 50% probability level.

2,5-Dibromoterephthalic acid dihydrate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$F_{000}=348$
$M_{r}=359.94$	$D_{\mathrm{x}}=2.139 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=10.670(2) \AA$	$\lambda=0.71073 \AA$
	Cell parameters from 25 reflections

supplementary materials

$$
\begin{aligned}
b & =7.413(1) \AA \\
c & =7.074(1) \AA \\
\beta & =92.74(3)^{\circ} \\
V & =558.89(15) \AA^{3} \\
Z & =2
\end{aligned}
$$

$$
\begin{aligned}
& \theta=10-13^{\circ} \\
& \mu=7.26 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.10 \times 0.10 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
$R_{\text {int }}=0.0000$
Radiation source: fine-focus sealed tube
$\theta_{\text {max }}=25.2^{\circ}$
Monochromator: graphite
$T=293(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.530, T_{\text {max }}=0.594$
1003 measured reflections
1003 independent reflections
$\theta_{\text {min }}=1.9^{\circ}$
$h=-12 \rightarrow 12$
$k=0 \rightarrow 8$
$l=0 \rightarrow 8$
3 standard reflections
every 200 reflections
intensity decay: none

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.117$
$S=1.05$
1003 reflections
67 parameters
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.06 P)^{2}+1.5 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.55 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.70 \mathrm{e} \AA^{-3}$
Extinction correction: none
21 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br	$0.31754(7)$	$0.35260(9)$	$0.52687(10)$	$0.0366(3)$
OW	$-0.0069(5)$	$-0.2828(11)$	$0.7105(11)$	$0.093(3)$
HWA	-0.0608	-0.2028	0.6780	0.111^{*}
HWB	-0.0299	-0.3786	0.7651	0.111^{*}
O1	$0.1532(5)$	$0.0220(6)$	$0.5124(8)$	$0.0495(14)$
O2	$0.2259(5)$	$-0.2252(7)$	$0.6570(9)$	$0.0554(15)$
H2A	0.1515	-0.2402	0.6767	0.083^{*}
C1	$0.5431(6)$	$0.1725(10)$	$0.4729(9)$	0.034
H1A	0.5725	0.2885	0.4518	0.040^{*}
C2	$0.4182(6)$	$0.1457(8)$	$0.5085(9)$	$0.0276(13)$
C3	$0.3736(6)$	$-0.0245(8)$	$0.5317(8)$	$0.0255(13)$
C4	$0.2396(6)$	$-0.0748(9)$	$0.5662(9)$	$0.0314(15)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	$0.0487(4)$	$0.0111(4)$	$0.0496(5)$	$0.0050(3)$	$-0.0007(3)$	$0.0002(3)$
OW	$0.030(3)$	$0.111(6)$	$0.139(7)$	$0.008(3)$	$0.013(3)$	$0.073(5)$
O 1	$0.045(3)$	$0.016(3)$	$0.087(4)$	$-0.004(2)$	$-0.002(3)$	$0.015(3)$
O 2	$0.051(3)$	$0.028(3)$	$0.087(4)$	$-0.006(3)$	$-0.004(3)$	$0.029(3)$
C 1	0.034	0.034	0.034	0.000	0.002	0.000
C 2	$0.043(3)$	$0.009(3)$	$0.030(3)$	$0.002(3)$	$-0.009(3)$	$0.000(3)$
C 3	$0.038(3)$	$0.013(3)$	$0.025(3)$	$-0.002(3)$	$-0.003(2)$	$-0.004(3)$
C 4	$0.035(3)$	$0.022(3)$	$0.038(4)$	$0.003(3)$	$0.004(3)$	$0.005(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br}-\mathrm{C} 2$	$1.880(6)$
$\mathrm{OW}-\mathrm{HWA}$	0.8500
$\mathrm{OW}-\mathrm{HWB}$	0.8500
$\mathrm{O} 1-\mathrm{C} 4$	$1.215(8)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.299(8)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8200
$\mathrm{HWA}-\mathrm{OW}-\mathrm{HWB}$	120.0
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$120.4(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.8
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.1(6)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br}$	$122.9(5)$
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-2.7(10)$
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br}$	$176.2(5)$

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$2.7(10)$
$\mathrm{Br}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$-176.2(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.3(6)$

$\mathrm{C} 1-\mathrm{i}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	$-154.9(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-153.4(7)$
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$25.6(8)$

Symmetry codes: (i) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
OW—HWA $\cdots \mathrm{Ol}^{\text {ii }}$	0.85	2.11	$2.903(9)$	155
OW—HWB \cdots O1 $^{\text {iii }}$	0.85	2.22	$2.944(9)$	142
O2—H2A $\cdots \mathrm{OW}$	0.82	1.75	$2.566(8)$	177
Symmetry codes: (ii) $-x,-y,-z+1 ;$ (iii) $-x, y-1 / 2,-z+3 / 2$.				

Fig. 1

